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SUMMARY

For diseases that do not follow a clear Mendelian pattern of inheritance nonparametric tests
applied to affected sibs have been shown to be robust to the inherent uncertainty about the precise
underlying genetic model. It is known that the weights optimizing the power of tests using IBD
alleles shared by affected sib pairs or triples depend on the underlying model. We show how efficiency
robustness techniques, used in other areas of statistics, provide a systematic approach for
constructing a robust linear combination of the statistics that are optimal for the individual members
of a family of plausible genetic models. The method depends on the correlation matrix of the optimal
tests as these correlations reflect how different the models are. When the minimal correlation is less
than 0.5, an alternate robust procedure is proposed. The methods apply to combining data from
sibships of different sizes.

INTRODUCTION

Classical likelihood linkage analysis assumes a parametric model relating the effects of genotypes
at a single locus to a trait phenotype (Ott, 1999). This method has contributed to the identification
of highly penetrant genes for diseases following simple Mendelian patterns, e.g. Huntington disease
and Alzheimer’s disease. For more complex diseases, for which the precise model of inheritance may
not be known, nonparametric methods that require fewer model assumptions have'been developed
(Blackwelder & Elston, 1985; Risch, 1990; Faraway, 1993 ; Holmans, 1993). These have been shown
to perform reasonably well under a broad range of genetic models (Kruglyak et al. 1996; Teng &
Siegmund, 1997; Olson ef al. 1999). Whittemore & Tu (1998) proposed a robust ‘minimax’ test that
has good power properties over a family of models. We show that the theory of efficiency robustness
(Gastwirth, 1966; Birnbaum & Laska, 1967; Gastwirth 1985; Lachin & Wei, 1988; Burnett et al.
1989; Zucker & Lakatos, 1990; Podgor ef al. 1996 ; Broet ef al. 1999 ; Freidlin et al. 1999) yielding the
maximin efficiency robust test (MERT) is applicable to a wide class of genetic models including those
considered by Schaid & Nick (1990), Sham, Zhao & Curtis (1997) and Whittemore & Tu (1998). The
approach is based on the correlation matrix of the optimal tests, as the squares of the correlations
are their relative asymptotic efficiencies at each of the possible models. For affected sib-pairs the
MERT test is the robust linear combination of the means and proportions tests obtained by
Whittemore & Tu (1998). A non-linear robust test based on the maximum of the optimal tests is also
discussed and conditions when it is preferable to the MERT are given. The maximum of the means
and proportions tests for affected sib-pairs was considered by Schaid & Nick (1990) but it is not
noticeably more powerful than the maximin efficient linear combination (MERT) of the two
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statistics. For broader families of models, however, the maximum of several optimum procedures can
be more powerful than the MERT. Indeed, this is the case for affected sib-triples. Throughout the
paper we restrict attention to a single marker for which the IBD status of siblings can be clearly
determined. The methods of constructing the MERT should readily extend to the situation where the
IBD status is estimated as only the correlations of the optimal tests will change.

GENERAL BACKGROUND

In order to compare the powers of two consistent tests of the null hypothesis 6 = 6, vs. 0 >0,,
Pitman (Noether, 1955; Stuart & Ord, 1991) introduced the concepts of asymptotic efficiency and
efficacy. Let two tests 7} and 7} have a large sample bivariate normal distribution. One evaluates the
limiting power of the tests for a sequence of alternatives 6, = 6,+k/(n''?), that approach the null
hypothesis as the sample size, n, increases (kis a constant). The asymptotic power of the tests
T, (i = 1,2) against the alternative 0, can be shown to be

O(c;k—z,), (1)

where z, is the 100(1 —a) percentile of the standard normal distribution and the efficacy
T e VT

E,(T) and V,(T}) are mean and variance of T, which are functions of 6 and @ is the o.d.f. of a standard

normal distribution. The asymptotic relative efficiency (ARE) of test T, to test T, is the ratio of the
sample sizes required for the tests to have equal asymptotic power. From (1) and (2):

ARE(T}, T0) = lim (ﬁz) = (ﬁ)z (3)

(2)

" Ca

Suppose one of the tests, say T}, is the asymptotically most powerful for a particular model. The ARE
of another consistent test 7} to T} is the square of their correlation under the null hypothesis. In many
applications including linkage analysis the data may be assumed to arise from one of several
scientifically plausible genetic models. Often the optimal tests 7} for each model are asymptotically
jointly normally distributed with correlation matrix {p,}. Then the Pitman ARE of the test T
relative to the test 7} when 7} is optimum is p}; = <7}, 1;>*. Thus, from (3), the sample size needed by
the sub-optimal test 7} relative to that needed by T, to achieve the same power that T; has is given

by
lim (%) =1/p3 (4)

)
Tt should be noted that for 1 p.F. tests such as those developed by Whittemore & Halpern (1994),
Teng & Siegmund (1997) and Whittemore & Tu (1998),
g
2>
FTe

where ¢ (¢') is the non-centrality parameter of the optimal (other) test. Whittemore & Tu’s penalty,
which expresses the percentage increase in sample size needed by the non-optimal test to achieve the

same power as the optimal one, is p™>—1. _
Suppose one has I possible models with corresponding optimal tests Z, (1 = 1,...,1), standardized

versions of T, (mean 0 and variance 1). For a test Z denote its relative efficiency under the model i

by e(Z§
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by e(Z,1) = {Z, Z;»* = p}. The minimum value, e*(Z), of e(Z, i) over the models measures the greatest
loss in power of test Z relative to the optimal tests. The maximin efficiency robust test (MERT), M,

satisfies e*(M) = supe* (Z) where I' is the set of all consistent asymptotically normal tests
Zel’

for the problem, i.e. M has the highest minimum efficiency. Gastwirth (1966) showed that when the
minimum correlation, p* = min(p;), of the optimal tests Z,, is > 0 the MERT exists, is unique, and
is a linear combination of the {Z;}. Note that the test yielding the MERT, maximizing the minimum

- value of p,; for a set of models, is also the test minimizing the maximum penalty (loss of relative

efficiency) described by Whittemore & Tu.

A simple algorithm to obtain the MERT is given in Gastwirth (1985) and is used by Zucker &
Lakatos (1990) to analyse survival data. The idea is to find the most disparate models, i.e. those
whose corresponding tests Z, and Z, have correlation P12 = p* (the minimum). The MERT for these
two models is given by R, = (Z,+Z,)/v2(1 + p,,) and has efficiency (1+p,,)/2 for each of them. To
see whether R, is the MERT for the entire family one computes its correlation with the other optimal
Z,. It all of them are at least p*, R, is the MERT for the entire family. Otherwise, there will be a test,
Zy, having the lowest correlation with B,. The linear combination, Ry, of Z,, Z, and Z,, which has
equal correlation (p**) with each of them is their MERT. Tf the correlation of Ry with each remaining
Z; is at least p**, R, is the MERT for the entire family. If not, one repeats the process.

Although the assumption of a finite set of models may appear to limit the applicability of the
MERT approach, Gastwirth & Podgor (1992) demonstrated that the MERT statistic, M, for {Z,}
remains the MERT for the family of all convex combinations of {Z}. A routine calculation shows that
if one uses non-standardized versions of the optimal tests, any convex combination of them is
expressible as a multiple of another convex combination of the standardized optimal tests. Hence,
the MERT, M, of the {Z,} or {7}} is the MERT for all tests in the closed convex hull of either defining
family.

Another robust test statistic is MAXI = max (Z,). Asymptotically, under the null hypothesis,

igigI

o MAXTis distributed as max [MN(0,{py})]. For two plausible models for survival data this statistic was

proposed by Tarone (1981) and a similar procedure for analysis of ASP data is discussed by Schaid
& Nick (1990). In the context of survival analysis, the maximum of several tests has been used by
Fleming & Harrington (1991) and Lee (1996). Freidlin, Podgor & Gastwirth (1999) considered
survival and categorical data models and showed that when p* < 0.5 the MAXT test is more powerful
than the MERT but when p* >0.7 there was virtually no difference in their powers.

The correlation matrix, {pi;}, of the optimal statistics summarizes the structure of the family of
alternative models as each correlation reflects how close, statistically, the two models are. More
precisely, the distance between the standardized optimal tests, I, =7, equals 2(1—p,). The
advantage of the efficiency robustness approach is that the optimal tests for a wide variety of
statistical problems have a joint asymptotically normal distribution so robust tests can be obtained
routinely.

Efficiency robust tests have high efficiency relative to the optimal tests for each of the possible
models. They should be distinguished from the tests that possess the largest minimum power for
testing linkage over the same class of models. This criterion was introduced in the nonparametric
setting by Doksum (1966, 1967) who standardized the various alternative models for two sample
rank tests, e.g. by requiring the distributions to have the same variance. Gastwirth & Podgor (1992)
noted that if one standardizes the models by their Fisher information the two criteria then agree. The
test optimal for the least informative model often satisfies the maximin power criteria but not the
maximin efficiency one. The difference between the two criteria will be illustrated in the discussion
of sib-pairs.
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AFFECTED SIB-PAIRS

Following Schaid & Nick (1990) let N = (ny, ny,n,) denote the numbers of sib-pairs that inherit 0,1
and 2 marker alleles IBD, respectively (n = n,+n;+17,). Denote the vector of probabilities that a
sib-pair shares 0, 1 and 2 marker genes by P = (p,, D1, Pa)- The empirical estimate of P is

5 A A A Ng Ny N
P = (po,pl,p2)=(—0 —L i)

LI
n n n

Qince the random vector N has a trinomial distribution with parameters (1, Pg, Py, Pe), it can be shown
(Rao, 1973) that \/ﬁ(P—f’) ~ N(0, diag (P)—P’P). Under the null hypothesis of no linkage P = (3,3,
1y, Various plausible genetic models lead to different optimal tests Z; because they yield different IBD
proportions (Suarez et al. 1978). The finite sample and asymptotically optimal tests against a specific
alternative are given in Knapp (1991) and Schaid & Nick (1990). Let W, denote the optimal weight

vector for the 7th model. Then the optimal test 7; and its standardized versions Z, are

(5)

, VaWy(P—P)
T = W/(P—P) and Z,= i
= WP =P) and 2= e e (D) - P P)W,

The null correlation between the tests optimal for models ¢ and j is

o = W (diag (P)—P' P)W,
i W, (diag (P)— P’ P)W; ~/W; (diag (P)—P"P)W,’

Whittemore & Tu (1998) considered the family F' = {F,: 0 < a < 0.5} of models for the underlying
IBD sharing probabilities where

" [P:(/\(O,a,1—a)+(1—/\) (i%i)ﬂ <A< | (6)

They showed that the efficient score test, T, for a model F, is of the form (6) with

W= (0 a2 1). (7

71—a7

The well known means test, 7 5, is based on 0.5p, + 19, (W = {0,0.5,1}), and the proportions test T
based on p, (W = {0,0, 1}) are optimal for the models a = 0.5 and a = 0, respectively (see Whittemore
& Tu, 1998). The null correlation of the tests T, and T, is 0.8165 and corresponding MERT is
(Z0+Z0.5)/\/§_(-1§16—5) where Z, ;= (0.5p,+ P, — 1/2)/\/2—/(—1677") and Z, = (P~ 1/4‘)/\/3_/W In
terms of (7) the MERT is specified by W = {0, 0.275, 1}. Note that for any model F,in F,its optimal

test, 7T, is the convex combination g iaTO_s + (1 —3 fa) T, Thus, the MERT for the pair (), 75) is

the MERT for the entire family F and has the same maximin efficiency, (14 p)/2, relative to the

optimal tests for any of the models.
Another possible procedure is the maximum of 7} and 7Ty, which we will call MAX2, and was

discussed by Schaid & Nick (1990). Sham (1998, p.116) suggested using the more significant of T

and 7T}, and doubling the p-value.
We conducted a power simulation to compare the properties of the various optimal tests and the
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Table 1. Empirical power estimates for the sib-pair tests (for sample size 200)

Proportions test Optimal test Optional test Means test ~MERT

Simulate W= W= W= W= W= Max2 2%Min
under (0,0,1) (0,0.167,1)  (0,0.333,1)  0,0.5,1) (0,0.275,1) (Ex. Pair) p-value
Null 0.0406 0.0493 0.0474 0.0509 0.0491 0.0460 0.0406
W=(0,0,1) 0.805 0.813 0.769 0.681 0.793 0.785 0.779
W =1(0,0.167,1) 0.771 0.806 0.790 0.745 0.802 0.779 0.767
W = (0,0.333,1) 0.711 0.783 0.800 0.797 0.799 0.780 0.761
W =1(0,0.5,1) 0.577 0.698 0.757 0.798 0.740 0.752 0.725

The NULL row gives the estimated size of a nominal 0.05 level test. Because they differ slightly from 0.05, the
power of the optimal test may sometimes be lower than a test with which it is highly correlated.
Estimates are based on 1000000 replications.

Table 2. Empirical power estimates of means, proportions and MERT tests when A = 0.0518
(Pos D1 D) = (0.237,0.474,0.289)  (py, Py, py) = (0.237,0.5,0.263)

Proportions 0.804 0.168
Means 0.642 0.217
MERT 0.753 0.202

Estimates are based on 1000000 replications of samples of 1000. The large sample size was used to ensure that the
asymptotic approximation to the 0.05 level was very accurate.

three robust tests. Table 1 presents the powers, obtained by simulation, of the robust tests and four
optimal tests specified in (5) and (7) for different members of the family {7}}, 0 < a <€ 0.5. The 0.05
level of significance was used. The parameter A in (6) was selected so that the power of the optimal
test was approximately 80 %. The results in Table 1 indicate that there can be a substantial loss in
power when the means test is used in situations where the proportions test is optimal and vice-versa.
The MERT and MAX2 efficiency robust procedures provide similar protection against loss of power
relative to the optimal test when the model is uncertain. Sham’s method can be considered as a useful
approximation to the MAX?2 test as it is slightly less powerful. Both robust procedures have their
largest relative loss of power at the two extreme genetic models. The sample size required by the
MERT can be obtained from relationship (4). If the optimal test is used to analyse 100 sib-pairs this
implies that a sample of 110 is needed for the MERT when the data come from one of the extreme
models, in agreement with Table 1 in Whittemore & Tu (1998).

To appreciate the difference between the two criteria, maximin power and maximin efficiency,
consider the properties of the means and proportions tests for the models F, , and ¥, when A = 0.0518.
The corresponding alternative trinomial distributions for which the means and proportions tests are
optimal are (0.237,0.5,0.263) and (0.237,0.474,0.289). The first alternative, corresponding to the
model Fj ;, is closer to the null value (0.25,0.5,0.25). The powers of the two tests are given in Table
2. The means test has maximin power, however, one is trading a loss of 15% of power against the
first model for a 4% gain against the second model. Note that the MERT has high power relative
to the optimal tests for both models.

AFFECTED SIB-TRIPLES

In this section we apply efficiency robustness principles to tests relying on n affected sib-triples.
Following the development given in Whittemore & Tu (1998), there are four possible IBD
configurations for three siblings (Sribney & Swift, 1992; Feingold et al. 1993). They are denoted by
2,1 =0, ..., 3 and their sample proportions by %,. The 1 p.F. tests for sib triples is based on weighted
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sums of the 2, = WZ where W = (wq,w,, w,, w,) and 7 = (8y,%,,%0,%,). As the %, sum to 1 the

standardized statistics can be expressed as

A 3 A 1 A 3
\/ﬁ[wo (z0—§)+zl—ﬁ+w2 (Zz—g ]
V5 (Wi +w}) — 55w, Wy — 155 (Wo + W) + 355

7 =

Whitemore & Tu (1998) consider the family of models

3 3
F, = [z = (29,21, %9, 23) = A(2,0,0,1—a—b)+(1—A) (8’ 16’§’1—6)]’

Whittemore & Tu showed that the coefficients (w, and w,) of the optimal test (8) for the model Fgp
are given by
' _3a/2+b—1 a+b—1 / (10)

Yo xab—1° T uyab—1

The genetically extreme models lie at the edges of the region (9) in the (a,b) space which is given

“in Figure 1. The five extreme models are vertices of this region. As every interior point of the region
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Table 3. Empirical power estimates for the sib-triples tests (sample size 200)

W= W= W=
Simulate W= W= 0.67,1,  (—0.251,  (0.25,1,
(05,1,0,0)  (0,1,0,0) —0.17,0) —0250) —0.75,0) MERT Max5
0.0563 0.0387 0.0514 0.0519 0.0511 0.0493  0.0469
0.5,1,0, 0) 0.798 0.395 0.771 0.317 0.675 0.674  0.713
0,1,0, 0) 0.534 0.801 0.324 0.796 0.424 0.724  0.761
0.67,1, —0.17,0) 0.778 0.247 0.797 0.208 0.722 0.616  0.712
—0.25,1, —0.25,0) 0.362 0.734 0.211 0.805 0.426 0.667  0.722
0.25,1, —0.75,0) 0.683 0.319 0.720 0.379 0.800 0.686  0.713

The Null row gives the estimated size of a nominal 0.05 leve] test.
Estimates are based on 1000000 replications.

Table 4. Sample size required for same power as the optimal test has Sfor 100 observations

Tests
Optimal weights W =1(05,1,0,0) W=(0,1,0,0)0 MERT Max5
W =(0.5,1,0,0) 100 250 126 120
W=(0,1,0,0) 250 100 137 119
W=(0.67,1, -0.17,0) 106 472 146 117
W=(-0.25,1,-0.25,0) 400 111 147 121
W=(0.25,1,-0.75,0) 133 333 123 120

is a convex combination of the vertlees the family of models F,, is the convex hull of the five extreme
models. Thus the MERT for these five models is also the MERT for the entire family. The correlation
matrix of the optlmal tests with the corresponding values of (w,, w,) is:

(0.5,0) 0,0)  (0.67—0.17) (—0.25, —0.25) (0.25, —0.75)
1.000 0.632 0.970 0.500 0.866
0.632 1.000 0.460 0.949 0.548
0.970 0.460 1.000 0.364 0.910
0.500 0.949 0.364 1.000 0.577
0.866 0.548 0.910 0.577 ~1.000

As py, = 0.364 is the minimum correlation, for this family, the third and fourth models are the
‘extreme pair’. The MERT coefficients are: (0, 0, 0.6055, 0.6055, 0), corresponding to w, = 0.138 and
wy = —0.212. The MERT has maximum efficiency 0.682 and AREs 0.792, 0.728, 0.682 0.682 and
0.811 relative to the optimal tests for the five models. An alternative robust test is MAXS5, the
maximum of the standardized optimal tests for the five extreme models. Table 3 presents results of
a power simulation study for the sib-triple tests. The empirical power estimates are tabulated for the
optimal tests for the five models and the two robust tests. The data for samples of size 200 were
simulated under the five extreme models.

The results in Table 3 show that there can be a substantial loss of power when the test optimal for
& genetical model different from the true one is used. The greatest such loss (0.797—0.208 = 0.589
or 0.805—0.211 = 0.594) occurs when the test optimal for the third (fourth) model is used when the
true underlying model is fourth (third). As the minimum null correlation between the optimal test
statistics was 0.364, the results of Freidlin et al. (1999) suggest that the MAXS5 test will perform
better than the simpler MERT. The last two columns confirm this, the additional power of MAX5
ranged from 0.03 to 0.09. Both methods, however, provide reasonable power protection.

Another way of presenting the advantage of the robust procedures is to look at the sample sizes
needed to have a desired power under various alternatives. Table 4 gives the sample sizes required

|
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to reach the same agymptotic power as the optimal test. The table is based on the asymptotic results
for the two optimal tests and the MERT. The values for the MAX5 tests were obtained empirically.
The lower sample size needed by MAXS5 relative to the MERT reflects its increased power robustness
in this situation. Note that the sample sizes for the optimal tests and MERT agree with Table 4 of

Whittemore & Tu (1998).

COMBINING DATA FROM DIFFERENT TYPES OF SIBSHIPS

Sham et al. (1997) considered n sibships with a,, ..., a,, affected members and ., ..., %, unaffected
members and developed a method for combining the results of sibships of the various (a;, »;) types.
When the sample contains a number of sibships with three or more affected members another
complication arises: an affected sibship contributes a(a—1)/2 sib-pairs pair but only a—1 of these
a(a—1)/2 pairs are independent. Thus sib-pairs from sibships of different size and different number
of affected sibs should be weighted appropriately to reflect the relative amount of information they
contribute. Several authors (Suarez & Hodge, 1979; Hodge, 1984) proposed weighting schemes based
on various measures of information. Sham et al. (1997) developed an approach that yields the test
with the maximum asymptotic power for a particular single locus model. They also considered the
situation where the data followed one of five models: rare recessive (RR), rare dominant (RD),
common recessive (CR), common dominant (CD) and Alzheimer’s (AZ) that represents a minor
susceptibility locus and used the means tests for each sibship (1 = (0, 1,2)). A robust combination of
these optimal tests will be obtained using the results in Sham ef al. (1997).

Denote the number of sibships in the sample with @ affected and u unaffected members by k,,.
Sham et al. obtained the optimum weights, w,,, for each type of sibship under the five different
genetic models, their combined statistic is

kau
2 Way 2 (Y;_mz)
T = (e, u) =1
3
kau Wau Sa
(a,u)

where Y, is the sum of number of alleles IBD in the sibship ¢; m, and s; are its mean and variance

under the null hypothesis.
The null correlation between two optimal tests with weights w,, and v,,, respectively, is:

Z wau vau kau 82
= e . 11
RV T IRV AT -
To illustrate the efficiency robust methodology we will assume the following data, where (a,u)
denotes the number of affected and unaffected sibs in a sibship: twenty sibships of each of the three
types (2,0), (2,1) and (2,2) and 10 sibships of type (7,0). Using formula (11) and weights in Table
6 of Sham et al. (1997) the correlation matrix of the optimal tests is

1 0.755 0.998 0.879 0.908
0.755 1 0.713 0977 0.959
0.998 0.713 1 0.847 0.880
0.879 0.977 0.847 1 0.997

0.908 0.959 0.880 0.997 1

The second and third models (rare dominant (RD) and common recessive (CR)) were the extreme
pairs. As the minimum correlation was 0.713 the MERT is an appropriate robust procedure. It gives
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each member of the extreme pair a weight of 0.54 and its maximin efficiency is 0.857. This implies
that if one used the optimal test for the RD model when the true model was CD, then one would need
100/(0.713)* = 197 families, assuming a similar proportion of sibships of the various types. The
corresponding sample size using the MERT is 117.

Feingold ef al. (1993) showed that triples should receive weight ¢:1 relative to pairs when data from
triples and pairs are available. The optimal value of ¢ depends on the underlying genetic model. The
efficiency robust approach uses the optimal tests utilizing both triples and pairs for each genetic
model. For the ith model, let P; and 7; denote the optimal tests for pairs and triples, respectively and
let ¢; be the weight yielding the optimal test S, = P,+¢,7} with standardized form z = (F+¢
T)/VV(E)+c; V(1;), where V(P,) and V(T) are variances of the statistics P, and T;, respectively. The
correlations between the Z; can now be computed as in (11) and the MERT and MAX obtained. As
before the minimum correlation will assist in deciding between the MERT and the MAX. Our
approach differs from that of Whittemore & Tu (1998) who combined robust tests for triples and
pairs by choosing a compromise value of ¢.

DISCUSSION

The problem of selecting a set of weights for a test based on IBD sharing so that it has high
efficiency for a range of scientifically plausible models of inheritance has been discussed by Kong &
Cox (1997), Sham et al. (1997) and Whittemore & Tu (1998). The choice of models should rely on
previous research. For instance, Schaid & Sommer (1994) indicated that molecular biology can assist
in the process. We have demonstrated that an approach used to obtain robust tests for a variety of
statistical problems applies to linkage tests. Recall that the non-parametric feature of tests based on
IBD sharing is similar to that of nonparametric rank tests. In both settings the distribution of a wide
class of test statistics, under the null hypothesis, is the same. The optimal test against a particular
alternative model, however, depends on that model. Thus one needs to obtain a compromise method
that has high relative efficiency across a set of models. The value p* reflects how disparate the
plausible underlying models are as the largest minimum efficiency possible for a test using linear
combinations of the optimal tests is (14 p*)/2.

The efficiency robust methods described here can be used when the TBD configuration of some sibs
cannot be unambiguously determined or when the marker locus does not coincide with the disease
locus. All that is required is that the optimal tests for each model have a joint large-sample normal
distribution as the matrix of squared correlations gives the corresponding AREs.

Because the same uncertainty about the underlying genetic model arises when many markers are
tested for linkage (Kruglyak et al. 1996; Feingold & Siegmund, 1997; Teng & Siegmund, 1997), the
methodology of this paper can be used to select a suitable robust test that can be applied at all
markers. Then the appropriate distribution of the supremum of these correlated tests can be used.
As the MERT is a linear combination of the allele sharing counts of each type of pedigree, it has an
asymptotic normal distribution so the methods of Teng & Siegmund (1997) are directly applicable.
If the correlation matrix of the optimum tests for the plausible underlying genetic models indicates

that the MAX of the tests optimal for the extreme models should be used, then the distribution of .

the robust procedure will need to be simulated as the supremum of correlated sets of maxima of even
two normal distributions is not known. These considerations also apply to the affected pedigree
(APM) tests (Weeks & Lange,1988; Whittemore, 1996) which are weighted sums of pedigree counts
with various IBD configurations. Again the optimal weights depend on the underlying genetic model.

We thank Lynn Goldin for several useful discussions and the referees for helpful suggestions. This research was
partially supported by a grant from the National Science Foundation.
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